Способ и устройство для преобразования

Изобретение относится к системе беспроводной связи и предназначено для уменьшения помехи в символах опорных сигналов пользователей на границе соты. Для чего каждая сота выбирает схему преобразования, по меньшей мере, из двух схем преобразования, чтобы реализовывать преобразование ресурсов. Векторное переключение выполняется для ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов и реализовывать расчет кодовых слов, так что такая проблема, что выходная мощность символов опорных сигналов является несбалансированной, может эффективно уменьшаться. 3 н. и 6 з.п. ф-лы, 8 ил., 6 табл.

1. Способ мультиплексирования с кодовым разделением каналов в беспроводной телекоммуникационной системе, при этом способ содержит этапы, на которых:выполняют (501) векторное переключение для выбранной ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов;определяют (502) отношения преобразования между несколькими различными последовательностями кодовых слов и каждой поднесущей опорных сигналов; имультиплексируют (503), на каждой поднесущей опорных сигналов, символы опорных сигналов каждого пространственного уровня согласно последовательности кодовых слов, которая соответствует каждой поднесущей опорных сигналов.2. Способ по п.1, в котором:выполнение (501) векторного переключения для выбранной ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов, в частности, содержит этап, на котором:выполняют переключение векторов-столбцов для четырехмерной ортогональной матрицы W, чтобы получать 4 различных последовательности кодовых слов, при этом:W (:, m) представляет вектор-столбец, соответствующий столбцу m ортогональной матрицы W, m варьируется от 1 до 4, и A=W (:, 1) B=W (:, 2), C=W (:, 3) и D=W (:, 4);причем 4 различных последовательности кодовых слов следующие:W1=[A, В, С, D];W2=[B, A, D, С];W3=[C, D, А, В] или [С, D, В, А];W4=[D, С, В, А] или [D, С, А, В];определение отношений преобразования между несколькими различными последовательностями кодовых слов и каждой поднесущей опорных сигналов содержит этап, на котором:определяют, что 4 различных последовательности W1, W2, W3 и W4 кодовых слов применяются каждой поднесущей опорных сигналов по очереди.3. Способ по п.1, в котором:выполнение (501) векторного переключения для выбранной ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов, в частности, содержит этап, на котором:выполняют переключение векторов-строк для четырехмерной ортогональной матрицы W, чтобы получать 4 различных последовательности кодовых слов, при этом:W’ (m, 🙂 представляет вектор-строку, соответствующий строке m ортогональной матрицы W, m варьируется от 1 до 4, A’=W’ (1, :), B’=W’ (2, :), C’=W’ (3, :), D’=W’ (4, :);причем 4 различных последовательности кодовых слов следующие:

или

;

или

; иопределение отношений преобразования между несколькими различными последовательностями кодовых слов и каждой поднесущей опорных сигналов содержит этап, на котором:определяют, что 4 различных последовательности W1′, W2′, W3′ и W4′ кодовых слов применяются каждой поднесущей опорных сигналов по очереди.4. Устройство компоновки кодовых слов в беспроводной телекоммуникационной системе, при этом устройство содержит:модуль (801) получения, выполненный с возможностью выполнения векторного переключения для выбранной ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов;модуль (802) определения, выполненный с возможностью определения отношений преобразования между несколькими различными последовательностями кодовых слов, полученными посредством модуля получения, и каждой поднесущей опорных сигналов; имодуль (803) мультиплексирования, выполненный с возможностью мультиплексирования, на каждой поднесущей опорных сигналов, символов опорных сигналов каждого пространственного уровня согласно последовательности кодовых слов, которая соответствует каждой поднесущей опорных сигналов.5. Устройство по п.4, в котором:модуль (801) получения, специально выполнен с возможностью выполнения переключения векторов-столбцов для четырехмерной ортогональной матрицы W, чтобы получать 4 различных последовательности кодовых слов, при этом:W (:, m) представляет вектор-столбец, соответствующий столбцу m ортогональной матрицы W, m варьируется от 1 до 4, A=W (:, 1), B=W (:, 2), C=W (:, 3) и D=W (:, 4);причем 4 различных последовательности кодовых слов следующие:W1=[A, В, С, D];W2=[B, A, D, C];W3=[C, D, А, В] или [С, D, В, А];W4=[D, С, В, А] или [D, С, А, В]; имодуль определения, в частности, выполнен с возможностью определять то, что 4 различных последовательности W1, W2, W3 и W4 кодовых слов приспосабливаются посредством каждой поднесущей опорных сигналов по очереди.6. Устройство по п.4, в котором:модуль (801) получения, в частности, выполнен с возможностью выполнения переключения векторов-строк для четырехмерной ортогональной матрицы W, чтобы получать 4 различных последовательности кодовых слов, при этом:W’ (m:) представляет вектор-строку, соответствующий строке m ортогональной матрицы W, m варьируется от 1 до 4, A’=W’ (1, 🙂 B’=W’ (2, :), C’=W’ (3, 🙂 и D’=W’ (4, :);причем 4 различных последовательности кодовых слов следующие:

;

или

;

или

; имодуль (802) определения, в частности, выполнен с возможностью определения, что 4 различных последовательности W1′, W2′, W3′ и W4′ кодовых слов применяются каждой поднесущей опорных сигналов по очереди.7. Устройство компоновки кодовых слов в беспроводной телекоммуникационной системе, содержащее:процессор, сконфигурированный с возможностью выполнять векторное переключение для выбранной ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов, определять отношения преобразования между несколькими различными последовательностями кодовых слов и каждой поднесущей опорных сигналов, и мультиплексировать, на каждой поднесущей опорных сигналов, символы опорных сигналов каждого пространственного уровня согласно последовательности кодовых слов, которая соответствует каждой поднесущей опорных сигналов; ипередающее устройство, сконфигурированое с возможностью передавать символы опорных сигналов.8. Устройство по п.7, в котором процессор дополнительно сконфигурирован с возможностью:выполнять переключение векторов-столбцов для четырехмерной ортогональной матрицы W, чтобы получать 4 различных последовательности кодовых слов, при этом:W (:, m) представляет вектор-столбец, соответствующий столбцу m ортогональной матрицы W, m варьируется от 1 до 4, и A=W (:, 1), B=W (:, 2), C=W (:, 3) и D-W (:, 4);причем 4 различных последовательности кодовых слов следующие:W1=[A, В, С, D];W2=[B, A, D, С];W3=[C, D, А, В] или [С, D, В, А];W4=[D, С, В, А] или [D, С, А, В];и при этом процессор дополнительно сконфигурирован с возможностью:определять, что 4 различных последовательности W1, W2, W3 и W4 кодовых слов применяются каждой поднесущей опорных сигналов по очереди.9. Устройство по п.7, в котором процессор дополнительно сконфигурирован с возможностью:выполнять переключение векторов-строк для четырехмерной ортогональной матрицы W, чтобы получать 4 различных последовательности кодовых слов, при этом:W’ (m, 🙂 представляет вектор-строку, соответствующий строке m ортогональной матрицы W, m варьируется от 1 до 4, A’=W’ (1, :), B’=W’ (2, :), C’=W’ (3, :), D’=W’ (4, :);причем 4 различных последовательности кодовых слов следующие:

;

;

или

;

или

; ипроцессор дополнительно сконфигурирован с возможностью:определяют, что 4 различных последовательности W1′, W2′, W3′ и W4′ кодовых слов применяются каждой поднесущей опорных сигналов по очереди.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕНастоящее изобретение относится к области техники связи и, в частности, к способу и устройству для преобразования ресурсов и мультиплексирования с кодовым разделением каналов.УРОВЕНЬ ТЕХНИКИВ технологии LTE (стандарт долгосрочного развития) передающее устройство предоставляет символ опорных сигналов для приемного устройства, и абонентское устройство приемного устройства может получать, согласно принимаемому символу опорных сигналов, значение оценки канала, требуемое для демодуляции опорного сигнала пользовательских данных. Преобразование ресурсов должно быть выполнено, чтобы обеспечивать передачу символов опорных сигналов и определять отношение преобразования между номером пространственного уровня для передачи символа опорных сигналов, поднесущей, на которой символ опорных сигналов находится, и кодовым словом, используемым посредством символа опорных сигналов. Несколько конструктивных схем рассчитываются для кодового слова при преобразовании ресурсов.В предшествующем уровне техники, когда преобразование ресурсов реализуется, каждая сота использует идентичную схему преобразования. В предшествующем уровне техники, когда мультиплексирование с кодовым разделением каналов выполняется, идентичная последовательность кодовых слов приспосабливается на поднесущих, на которых каждый символ опорных сигналов находится.Для преобразования ресурсов, поскольку каждая сота использует идентичную схему преобразования, для символов опорных сигналов пользователей на границе соты создаются значительные помехи; и когда кодовое слово рассчитывается, поскольку идентичное кодовое слово приспосабливается на поднесущих, на которых каждый символ опорных сигналов находится, такая проблема, что выходная мощность символов опорных сигналов является несбалансированной, возникает.СУЩНОСТЬ ИЗОБРЕТЕНИЯНастоящее изобретение предоставляет способ и устройство для преобразования ресурсов и мультиплексирования с кодовым разделением каналов, чтобы уменьшать помехи в символах опорных сигналов пользователей на границе соты и уменьшать такую проблему, что выходная мощность символов опорных сигналов является несбалансированной. Техническое решение заключается в следующем.В аспекте способ преобразования ресурсов предоставляется, и способ включает в себя:выбор схемы преобразования, по меньшей мере, из двух предварительно установленных схем преобразования, так что символ опорных сигналов, который имеет наибольшую мощность передачи и соответствует выбранной схеме преобразования, располагается в шахматном порядке с символом опорных сигналов, который имеет наибольшую мощность передачи и соответствует схеме преобразования, выбранной посредством, по меньшей мере, одной соседней соты по частоте и/или во времени; ивыполнение преобразования ресурсов согласно выбранной схеме преобразования.Устройство преобразования ресурсов дополнительно предоставляется, и устройство включает в себя:модуль хранения, выполненный с возможностью сохранять, по меньшей мере, две схемы преобразования, при этом схемы преобразования являются отношениями преобразования между номером пространственного уровня для передачи символа опорных сигналов, кодовым словом, используемым посредством символа опорных сигналов, и поднесущей, на которой символ опорных сигналов находится;модуль выбора, выполненный с возможностью выбирать схему преобразования, по меньшей мере, из двух схем преобразования, сохраненных в модуле хранения, так что символ опорных сигналов, который имеет наибольшую мощность передачи и соответствует выбранной схеме преобразования, располагается в шахматном порядке с символом опорных сигналов, который имеет наибольшую мощность передачи и соответствует схеме преобразования, выбранной посредством, по меньшей мере, одной соседней соты по частоте и/или во времени; имодуль преобразования, выполненный с возможностью выполнять преобразование ресурсов согласно схеме преобразования, выбранной посредством модуля выбора.В другом аспекте, способ мультиплексирования с кодовым разделением каналов предоставляется, и способ включает в себя:выполнение векторного переключения для выбранной ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов;определение отношений преобразования между несколькими различными последовательностями кодовых слов и каждой поднесущей опорных сигналов; имультиплексирование, на каждой поднесущей опорных сигналов, символов опорных сигналов каждого пространственного уровня согласно последовательности кодовых слов, которая соответствует каждой поднесущей опорных сигналов.Устройство мультиплексирования с кодовым разделением каналов дополнительно предоставляется, и устройство включает в себя:модуль получения, выполненный с возможностью выполнять векторное переключение для выбранной ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов;модуль определения, выполненный с возможностью определять отношения преобразования между несколькими различными последовательностями кодовых слов, полученными посредством модуля получения, и каждой поднесущей опорных сигналов; имодуль мультиплексирования, выполненный с возможностью мультиплексировать, на каждой поднесущей опорных сигналов, символы опорных сигналов каждого пространственного уровня согласно последовательности кодовых слов, которая соответствует каждой поднесущей опорных сигналов.Техническое решение, предоставляемое посредством настоящего изобретения, предоставляет следующие преимущества:Каждая сота выбирает схему преобразования, по меньшей мере, из двух схем преобразования, чтобы реализовывать преобразование ресурсов; поскольку символ опорных сигналов, который имеет наибольшую мощность передачи и соответствует выбранной схеме преобразования, располагается в шахматном порядке с символом опорных сигналов, который имеет наибольшую мощность передачи и соответствует схеме преобразования, выбранной посредством, по меньшей мере, одной соседней соты по частоте и/или во времени, помехи на опорных сигналах пользователей на границе соты могут быть эффективно уменьшены; помимо этого, векторное переключение выполняется для выбранной ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов, и отношения преобразования между каждой поднесущей опорных сигналов и несколькими различными последовательностями кодовых слов определяются, так что такая проблема, что выходная мощность символов опорных сигналов является несбалансированной, может эффективно уменьшаться.КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙЧтобы понятнее описывать технические решения в вариантах осуществления настоящего изобретения, ниже кратко описаны прилагаемые чертежи, используемые для описания вариантов осуществления. Очевидно, что прилагаемые чертежи, описанные далее, являются просто некоторыми вариантами осуществления настоящего изобретения.Фиг.1 является блок-схемой последовательности операций способа преобразования ресурсов согласно первому варианту осуществления настоящего изобретения;Фиг.2 является принципиальной структурной схемой блока частотно-временных ресурсов согласно второму варианту осуществления настоящего изобретения;Фиг.3 является блок-схемой последовательности операций способа преобразования ресурсов согласно второму варианту осуществления настоящего изобретения;Фиг.4 является принципиальной структурной схемой устройства преобразования ресурсов согласно третьему варианту осуществления настоящего изобретения;Фиг.5 является блок-схемой последовательности операций способа мультиплексирования с кодовым разделением каналов согласно четвертому варианту осуществления настоящего изобретения;Фиг.6 является принципиальной схемой, показывающей мультиплексирование с кодовым разделением каналов согласно пятому варианту осуществления настоящего изобретения;Фиг.7 является блок-схемой последовательности операций способа мультиплексирования с кодовым разделением каналов согласно пятому варианту осуществления настоящего изобретения; иФиг.8 является принципиальной структурной схемой устройства мультиплексирования с кодовым разделением каналов согласно шестому варианту осуществления настоящего изобретения.ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯЧтобы делать технические решения, цели и преимущества настоящего изобретения более понятными, далее подробно описываются варианты осуществления настоящего изобретения со ссылкой на прилагаемые чертежи.Вариант 1 осуществленияКак показано на фиг.1, способ преобразования ресурсов предоставляется в этом варианте осуществления, и процедура способа, в частности, следующая:101. Выбор схемы преобразования, по меньшей мере, из двух предварительно установленных схем преобразования, так что символ опорных сигналов, который имеет наибольшую мощность передачи и соответствует выбранной схеме преобразования, располагается в шахматном порядке с символом опорных сигналов, который имеет наибольшую мощность передачи и соответствует схеме преобразования, выбранной посредством, по меньшей мере, одной соседней соты по частоте и/или во времени.102. Выполнение преобразования ресурсов согласно выбранной схеме преобразования.Через способ, предусмотренный в этом варианте осуществления, каждая сота выбирает схему преобразования, по меньшей мере, из двух предварительно установленных схем преобразования, чтобы реализовывать преобразование ресурсов; поскольку символ опорных сигналов, который имеет наибольшую мощность передачи и соответствует выбранной схеме преобразования, располагается в шахматном порядке с символом опорных сигналов, который имеет наибольшую мощность передачи и соответствует схеме преобразования, выбранной посредством, по меньшей мере, одной соседней соты по частоте и/или во времени, помехи в символах опорных сигналов пользователей на границе соты могут быть эффективно уменьшены.Вариант 2 осуществленияЭтот вариант осуществления предоставляет способ преобразования ресурсов. Чтобы упрощать описание, блок частотно-временных ресурсов, показанный на фиг.2, рассматривается в качестве примера в этом варианте осуществления, и поднесущая, на которой символ опорных сигналов находится, называется «поднесущей опорных сигналов», с тем чтобы описывать способ преобразования ресурсов, предоставляемый в этом варианте осуществления.На фиг.2 субкадр включает в себя 2 временных кванта. В каждом временном кванте существуют 7 символов OFDM (мультиплексирования с ортогональным частотным разделением каналов); и в каждом временном кванте, всего 12×7 RE (элемент ресурсов) существуют. Способ выделения ресурсов опорных сигналов, используемый посредством блока ресурсов, следующий: CDM (мультиплексирование с кодовым разделением каналов) вводится во временной области, чтобы предоставлять 4 ресурса ортогональных опорных сигналов, например, первый RE на фиг.2; и FDM (мультиплексирование с частотным разделением каналов) вводится в частотной области, чтобы предоставлять 4 ресурса ортогональных опорных сигналов, например, второй RE на фиг.2. Для способа выделения ресурсов опорных сигналов, показанного на фиг.2, в предшествующем уровне техники, когда преобразование ресурсов выполняется, каждая сота использует идентичную схему преобразования, например, схему преобразования, показанную в таблице 1:Таблица 1Номер пространственного уровняL1L2L3L4L5L6L7L8Кодовое слово первого REC1C2  C3 C4 Кодовое слово второго RE  C1C2 C3 C4Согласно схеме преобразования, показанной в таблице 1, например, когда общее число пространственных уровней передачи (ранг) в пространстве равняется 3, согласно отношениям преобразования, показанным в таблице 1, два пространственных уровня передаются по первому RE, и один пространственный уровень передается по второму RE. Если каждый пространственный уровень имеет идентичную мощность передачи, которая равняется 1/3 средней мощности RE для данных:Мощность передачи ресурса выделенных опорных сигналов по первому RE (P/3+P/3)*beta = beta*P*2/3; иМощность передачи ресурса выделенных опорных сигналов по второму RE (P/3)*beta = beta*P/3.Beta представляет коэффициент регулирования мощности опорного сигнала, и P представляет среднюю мощность RE для данных. При этих обстоятельствах, мощность передачи ресурса выделенных опорных сигналов по первому RE в два раза превышает мощность передачи ресурса выделенных опорных сигналов по второму RE.Следует отметить, что то как задавать коэффициент регулирования мощности опорного сигнала, раскрывается в предшествующем уровне техники и не ограничивается в этом варианте осуществления. В этом варианте осуществления, для описания рассмотрим такой пример, что коэффициент регулирования мощности опорного сигнала (beta) = 2 задается, когда ранг > 2, в противном случае, beta = 1.Кроме того, для пользователя на границе соты, поскольку SINR (отношение «сигнал-к-помехам-и-шуму») является более низким, способ передачи с общим числом пространственных уровней передачи (рангом) = 1 или 2, в общем, приспосабливается. Если схема преобразования, показанная в таблице 1, приспосабливается, этот пользователь занимает ресурс первого RE для передачи выделенного опорного сигнала.Если как сота 1, так и сота 2 выбирают схему преобразования, показанную в таблице 1 для пользователя на границе соты 1, способ передачи с рангом = 1 или 2, в общем, приспосабливается, и мощность помех, накладываемая посредством соты 2 на символ опорных сигналов, показывается в таблице 2:Таблица 2Общее число пространственных уровней передачи соты 212345678Мощность помех от соты 2PP4/3*РP6/5*РP8/7*РPВ таблице 2, P представляет среднюю мощность RE для данных. Когда ранг > 2 в соте 2, коэффициент регулирования мощности опорного сигнала (beta) = 2 задается; в противном случае, beta = 1. Когда общее число пространственных уровней передачи (ранг) равняется 1, 2, 3, 5 или 7, больше пространственных уровней передается по первому RE, т.е. больше ресурсов мощности занимается, и большие помехи накладываются на соответствующие ресурсы соседней соты. В следующем анализе в этом варианте осуществления, символ опорных сигналов, который занимает больше ресурсов мощности и накладывает большие помехи на соответствующие ресурсы соседней соты, упоминается как символ опорных сигналов, который имеет наибольшую мощность передачи, а поднесущая опорных сигналов, на которой этот тип символа опорных сигналов находится, упоминается как поднесущая опорных сигналов, которая имеет наибольшую мощность передачи.Способ преобразования ресурсов предоставляется в этом варианте осуществления для того, чтобы уменьшать помехи для символа опорных сигналов пользователя на границе соты. Как показано на фиг.3, если две схемы преобразования предварительно устанавливаются, процедура способа, в частности, следующая:301: Выбор схемы преобразования из двух предварительно установленных схем преобразования, так что символ опорных сигналов, который имеет наибольшую мощность передачи и соответствует выбранной схеме преобразования, располагается в шахматном порядке с символом опорных сигналов, который имеет наибольшую мощность передачи и соответствует схеме преобразования, выбранной посредством, по меньшей мере, одной соседней соты по частоте и/или во времени.Схемы преобразования являются отношениями преобразования между номером пространственного уровня для передачи символа опорных сигналов, кодовым словом, используемым посредством символа опорных сигналов, и поднесущей, на которой символ опорных сигналов находится. Также при рассмотрении блока ресурсов, показанного на фиг.2, в качестве примера, схема A преобразования, показанная в таблице 3, и схема B преобразования, показанная в таблице 4, могут задаваться:Таблица 3Номер пространственного уровняL1L2L3L4L5L6L7L8Кодовое слово первого REC1C2  C3 C4 Кодовое слово второго RE  C1C2 C3 C4Таблица 4Номер пространственного уровняL1L2L3L4L5L6L7L8Кодовое слово первого RE  C1C2 C3 C4Кодовое слово второго REC1C2  C3 C4 В частности, при выборе схемы преобразования из двух предварительно установленных схем преобразования, каждая сота может выполнять выбор согласно идентификатору соты (идентификатору), например:Если идентификатор соты mod 2 = 0, схема A преобразования, показанная в таблице 3, выбирается; иЕсли идентификатор соты mod 2 = 1, схема B преобразования, показанная в таблице 4, выбирается.Предполагается, что сота 1 выбирает схему A преобразования, а соседняя сота 2 выбирает схему B преобразования.302: Выполнение преобразования ресурсов согласно выбранной схеме преобразования.На этом этапе, в процессе передачи символов опорных сигналов после преобразования ресурсов, для пользователя на границе соты 1, схема передачи с рангом = 1 или 2, в общем, приспосабливается, и мощность помех, накладываемая посредством соты 2, показывается в таблице 5:Таблица 5Общее число пространственных уровней передачи соты 212345678Мощность помех от соты 2 (в предшествующем уровне техники)PP4/3*РP6/5*РP8/7*РPМощность помех от соты 2 (в этом варианте осуществления)PP2/3*РP4/5*РP6/7*РPКак показано в таблице 5, P представляет среднюю мощность RE для данных. Когда ранг > 2 в соте 2, коэффициент регулирования мощности опорного сигнала (beta) = 2 задается; в противном случае, beta = 1. Из таблицы 5 можно видеть, что посредством приспособления схемы преобразования, предоставляемой в этом варианте осуществления, может быть эффективно уменьшена мощность помех опорного сигнала, накладываемая посредством соседней соты 2 на символ опорных сигналов пользователя на границе соты 1.Кроме того, в блоке ресурсов, показанном на фиг.2, кодовое слово по первому RE может отличаться от кодового слова по второму RE. Т.е. символы опорных сигналов мультиплексирования с частотным разделением каналов используют различные последовательности кодовых слов. При рассмотрении схемы преобразования, показанной в таблице 6, в качестве примера, кодовое слово Cm(m = 1-4) может отличаться от Dm(m = 1-4).Таблица 6Номер пространственного уровняL1L2L3L4L5L6L7L8Кодовое слово первого REC1C2  C3 C4 Кодовое слово второго RE  D1D2 D3 D4Предполагается, что следующие кодовые слова могут быть использованы по первому RE соты 1:[ 1, 1, 1, 1;1, -1, 1, -1;1, 1, -1, -1;1, -1, -1, 1]и различные сдвиги предыдущих кодовых слов могут быть использованы по второму RE, например:[ 1, 1, 1, 1;-1, 1, -1, 1;-1, 1, 1, -1;1, 1, -1, -1]Это предоставляет следующие преимущества. Когда конкретный для соты код скремблирования приспосабливается, если код скремблирования, приспосабливаемый по первому RE, является идентичным коду скремблирования, приспосабливаемому по второму RE, а именно, символы опорных сигналов мультиплексирования с частотным разделением каналов используют идентичный код скремблирования, межсимвольные помехи, накладываемые посредством соседней соты на первый RE, отличаются от межсимвольных помех, накладываемых на второй RE, и таким образом, производительность обнаружения может повышаться.Кроме того, символы опорных сигналов соседней соты также могут использовать различные кодовые слова, что не ограничивается в этом варианте осуществления.Через способ, предусмотренный в этом варианте осуществления, каждая сота выбирает схему преобразования, по меньшей мере, из двух схем преобразования, чтобы реализовывать преобразование ресурсов; поскольку символ опорных сигналов, который имеет наибольшую мощность передачи и соответствует выбранной схеме преобразования, располагается в шахматном порядке с символом опорных сигналов, который имеет наибольшую мощность передачи и соответствует схеме преобразования, выбранной посредством, по меньшей мере, одной соседней соты по частоте и/или во времени, помехи в символах опорных сигналов пользователей на границе соты могут быть эффективно уменьшены. Помимо этого, поскольку способ, предоставляемый в этом варианте осуществления, также поддерживает то, что символы опорных сигналов мультиплексирования с частотным разделением каналов или символы опорных сигналов мультиплексирования с временным разделением каналов используют идентичную последовательность кодов скремблирования и/или различные последовательности кодовых слов, межсимвольные помехи, накладываемые посредством соседней соты на опорные сигналы, отличаются, так что производительность обнаружения может повышаться.Вариант 3 осуществленияКак показано на фиг.4, устройство преобразования ресурсов предоставлено в этом варианте осуществления, и устройство включает в себя:модуль 401 хранения, выполненный с возможностью сохранять, по меньшей мере, две схемы преобразования, при этом схемы преобразования являются отношениями преобразования между номером пространственного уровня для передачи символа опорных сигналов, кодовым словом, используемым посредством символа опорных сигналов, и поднесущей, на которой символ опорных сигналов находится;модуль 402 выбора, выполненный с возможностью выбирать схему преобразования, по меньшей мере, из двух схем преобразования, сохраненных в модуле 401 хранения, так что символ опорных сигналов, который имеет наибольшую мощность передачи и соответствует выбранной схеме преобразования, располагается в шахматном порядке с символом опорных сигналов, который имеет наибольшую мощность передачи и соответствует схеме преобразования, выбранной посредством, по меньшей мере, одной соседней соты по частоте и/или во времени; имодуль 403 преобразования, выполненный с возможностью выполнять преобразование ресурсов согласно схеме преобразования, выбранной посредством модуля 402 выбора.В частности, модуль 402 выбора, в частности, выполнен с возможностью выбирать схему преобразования, по меньшей мере, из двух схем преобразования, сохраненных в модуле 402 хранения, согласно идентификатору соты.Предпочтительно, символы опорных сигналов мультиплексирования с частотным разделением каналов или символы опорных сигналов мультиплексирования с временным разделением каналов используют идентичную последовательность кодов скремблирования и/или используют различные последовательности кодовых слов.Через устройство, предусмотренное в этом варианте осуществления, каждая сота выбирает схему преобразования, по меньшей мере, из двух схем преобразования, чтобы реализовывать преобразование ресурсов; поскольку символ опорных сигналов, который имеет наибольшую мощность передачи и соответствует выбранной схеме преобразования, располагается в шахматном порядке с символом опорных сигналов, который имеет наибольшую мощность передачи и соответствует схеме преобразования, выбранной посредством, по меньшей мере, одной соседней соты по частоте и/или во времени, помехи в символах опорных сигналов пользователей на границе соты могут быть эффективно уменьшены. Помимо этого, поскольку способ, предоставляемый в этом варианте осуществления, также поддерживает то, что символы опорных сигналов мультиплексирования с частотным разделением каналов или символы опорных сигналов мультиплексирования с временным разделением каналов используют идентичную последовательность кодов скремблирования и/или различные последовательности кодовых слов, межсимвольные помехи, накладываемые посредством соседней соты на опорные сигналы, отличаются, так что производительность обнаружения повышается.Вариант 4 осуществленияКак показано на фиг.5, способ мультиплексирования с кодовым разделением каналов, предоставляется в этом варианте осуществления, и процедура способа, в частности, следующая:501: Выполнение векторного переключения для выбранной ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов.502: Определение отношений преобразования между несколькими различными последовательностями кодовых слов и каждой поднесущей опорных сигналов.503: Мультиплексирование, на каждой поднесущей опорных сигналов, символов опорных сигналов каждого пространственного уровня согласно последовательности кодовых слов, которая соответствует каждой поднесущей опорных сигналов.Через способ, предусмотренный в этом варианте осуществления, векторное переключение выполняется для выбранной ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов, и отношения преобразования между каждой поднесущей опорных сигналов и несколькими различными последовательностями кодовых слов определяются, и, следовательно, каждая поднесущая опорных сигналов использует различную последовательность кодовых слов, так что такая проблема, что выходная мощность символов опорных сигналов является несбалансированной, может эффективно уменьшаться.Вариант 5 осуществленияЭтот вариант осуществления предоставляет способ мультиплексирования с кодовым разделением каналов. Чтобы упрощать описание, блок ресурсов, показанный на фиг.6, рассматривается в качестве примера в этом варианте осуществления, чтобы подробно описывать способ, предоставляемый в этом варианте осуществления.На фиг.6 субкадр включает в себя 2 временных кванта (кванта времени). В каждом временном кванте 7 OFDM-символов существуют, и всего 12×7 RE существуют в каждом временном кванте. Способ выделения ресурсов опорных сигналов, приспосабливаемый посредством блока ресурсов, следующий: CDM вводится во временной области, чтобы предоставлять 4 ресурса ортогональных опорных сигналов. Когда кодовое слово рассчитывается в предшествующем уровне техники, идентичное кодовое CDM-слово (C1-C4) приспосабливается на поднесущих n1, n1+5 и n1+10.При рассмотрении матрицы Уолша 4×4 в качестве примера, например:C=[1, 1, 1, 1;1, -1, 1, -1;1, 1, -1, -1;1, -1, -1, 1]Предполагается, что C1 является первой строкой матрицы C, а именно, C1=C(1,:). Аналогично, предполагается, что C2=C(2,:), C3=C(3,:) и C4=C(4,:).Для фиг.6 в основном сценарии анализа дисбаланса мощности, рассматривается вектор пространственной широкополосной предварительной обработки. Т.е. для каждого пространственного уровня идентичный вектор пространственной предварительной обработки приспосабливается на каждой поднесущей. Если существует 8 передающих антенн, и символы выделенных опорных сигналов пространственного уровня m переносятся и передаются в кодовом слове Cm(m=1-4), матрица символов опорных сигналов передающего устройства на любой поднесущей опорных сигналов следующая:где:Wij является взвешенным коэффициентом уровня j передачи (j=1-4) для передающей антенны i (i=1-8), s является символом опорных сигналов, и Cij является символом j (j=1-4) кодового слова Ci (i=1-4).Из предыдущей формулы можно видеть, что: вектор символов опорных сигналов для передающей антенны i (i=1-8) следующий:

,где:Символ Pki, (k=1-4), передается в OFDM-символах 6, 7, 13 и 14 передающей антенны i, соответственно.Для различных i и j, считается, что коэффициент Wij вектора пространственной предварительной обработки, в общем, отличается. При комбинировании с ортогональностью матрицы C кодовых слов, т.е. для различных i и j, C(:,i) не равно C(:,j). Следовательно, можно заключить, что символ опорных сигналов, (k=1-4), в общем, имеет 4 различных значения. Т.е. на любой поднесущей опорных сигналов символы опорных сигналов, отправляемые по OFDM-символам 6, 7, 13 и 14, отличаются.Кроме того, считается, что все поднесущие опорных сигналов используют идентичный вектор пространственной предварительной обработки и идентичное кодовое слово опорных сигналов, суммы мощности RE опорных сигналов в каждом OFDM-символе опорных сигналов, соответственно, следующие:

;

;

; и

, где: представляет сумму мощности всех RE опорных сигналов в OFDM-символе m опорных сигналов (здесь m = 6, 7, 13, 14). Из предыдущего анализа, в общем, может быть известным, что:

.Т.е. в каждом OFDM-символе опорных сигналов возникает такая проблема, что выходная мощность опорных сигналов является несбалансированной.Способ расчета кодовых слов предоставляется в этом варианте осуществления, чтобы разрешать проблему дисбаланса выходной мощности опорных сигналов. Как показано на фиг.7, процедура способа, предоставляемого в этом варианте осуществления, в частности, следующая:701: Выполнение переключения векторов-столбцов для выбранной четырехмерной ортогональной матрицы, чтобы получать 4 различных последовательности кодовых слов.Чтобы упрощать описание, матрица Уолша 4×4 рассматривается в качестве примера, например:Ортогональная матрица W=[1, 1, 1, 1;1, -1, 1, -1;1, 1, -1, -1;1, -1, -1, 1].При условии, что A=W(:,1), B=W(:,2), C=W(:,3) и D=W(:,4), переключение векторов-столбцов выполняется для ортогональной матрицы W, чтобы получать четыре производных матрицы ортогональной матрицы W, которые, соответственно, следующие:W1=[A, B, C, D];W2=[B, A, D, C];W3=[C, D, A, B] или [C, D, B, A];W4=[D, C, B, A] или [D, C, A, B].702: Определение отношений преобразования между 4 различными последовательностями кодовых слов и каждой поднесущей опорных сигналов.В частности, согласно 4 различным последовательностям кодовых слов, полученным на этапе 701, 4 различных последовательности кодовых слов и каждая поднесущая опорных сигналов могут приспосабливать следующие отношения преобразования:для поднесущей n1 опорных сигналов приспосабливать последовательность W1 кодовых слов;для поднесущей n2 опорных сигналов приспосабливать последовательность W2 кодовых слов;для поднесущей n3 опорных сигналов приспосабливать последовательность W3 кодовых слов;для поднесущей n4 опорных сигналов приспосабливать последовательность W4 кодовых слов;для поднесущей n5 опорных сигналов приспосабливать последовательность W1 кодовых слов;для поднесущей n6 опорных сигналов приспосабливать последовательность W2 кодовых слов;и т.д.Т.е. определяется то, что каждая поднесущая опорных сигналов приспосабливает 4 различных опорных сигнала последовательностей W1, W2, W3 и W4 кодовых слов по очереди.На поднесущей n1, n2,…, опорных сигналов, мультиплексирование символов опорных сигналов этих пространственных уровней зависит от CDM-кодов.703: Мультиплексирование, на каждой поднесущей опорных сигналов, символов опорных сигналов каждого пространственного уровня согласно последовательности кодовых слов, которая соответствует каждой поднесущей опорных сигналов.Для способа мультиплексирования с кодовым разделением каналов, предоставляемого в этом варианте осуществления, решение по дисбалансу выходной мощности символов опорных сигналов в частности, анализируется следующим образом:При рассмотрении вектора пространственной широкополосной предварительной обработки 8 передающих антенн по-прежнему рассматриваются в качестве примера. Как показано на фиг.6, на поднесущей n1, если символы выделенных опорных сигналов пространственного уровня m (m=1-4) переносятся и передаются в кодовом слове W1 (m:), матрица символов опорных сигналов передающего устройства на поднесущей n1 следующая:

, где:Wij является взвешенным коэффициентом уровня j передачи (j=1-4) для передающей антенны i (i=1-8), и s является символом опорных сигналов.Из предыдущей формулы можно видеть, что: вектор символов опорных сигналов для передающей антенны i (i=1-8) следующий:

, где:Символ Pki, (k=1-4), передается в OFDM-символах 6, 7, 13 и 14 опорных сигналов передающей антенны i, соответственно.Согласно отношению преобразования между W2 и W1, можно заключить, что на поднесущей n2 опорных сигналов, соответствующий вектор символов опорных сигналов для передающей антенны i (i=1-8) следующий:

. Аналогично, можно заключить, что:На поднесущей n3 опорных сигналов соответствующий вектор символов опорных сигналов для передающей антенны i (i=1-8) следующий:

; иНа поднесущей n4 опорных сигналов соответствующий вектор символов опорных сигналов для передающей антенны i (i=1-8) следующий:

.Если число поднесущих опорных сигналов является целым кратным 4, можно заключить, что: для соответствующей передающей антенне i (i=1-8), в каждом OFDM-символе опорных сигналов, а именно, в OFDM-символах 6, 7, 13 и 14, суммы мощности для всех RE опорных сигналов равны, т.е.:

, где: представляет сумму мощности всех RE опорных сигналов в OFDM-символе m опорных сигналов (здесь, m = 6, 7, 13, 14). При этих обстоятельствах, поскольку каждый OFDM-символ опорных сигналов имеет равную выходную мощность, такая проблема, что выходная мощность опорных сигналов является несбалансированной, разрешается.Кроме того, если число поднесущих опорных сигналов не является целым кратным 4, в каждом OFDM-символе опорных сигналов, а именно, в OFDM-символах 6, 7, 13 и 14, суммы мощности для RE опорных сигналов в меньшей степени отличаются, так что такая проблема, что выходная мощность опорных сигналов является несбалансированной, также значительно уменьшается.Например, если число поднесущих опорных сигналов равняется 5, можно заключить, что: в OFDM-символах 6, 7, 13 и 14 опорных сигналов суммы мощности для RE опорных сигналов, соответственно, следующие:

;

;

; и

.Из предыдущей формулы можно видеть, что: в OFDM-символах 6, 7, 13 и 14 опорных сигналов суммы мощности RE опорных сигналов отличаются только в одном члене. Следовательно, такая проблема, что выходная мощность опорных сигналов является несбалансированной, может уменьшаться.Необязательно, помимо того, что переключение векторов-столбцов выполняется для выбранной ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов, переключение векторов-строк также может быть выполнено для выбранной ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов. Форма векторного переключения ортогональной матрицы не ограничена конкретным образом в этом варианте осуществления. Также при рассмотрении четырехмерной ортогональной матрицы W в качестве примера, далее описывается выполнение векторного переключения для ортогональной матрицы, чтобы получать 4 различных последовательности кодовых слов. Для любой четырехмерной ортогональной матрицы W, предполагается, что A’=W'(1,:), B’=W'(2,:), C’=W'(3,:) и D’=W'(4,:).W'(m,:)(m=1…4) представляет вектор-строку, соответствующий строке m матрицы W. Переключение векторов-строк выполняется для ортогональной матрицы W, чтобы получать четыре производных матрицы, которые, соответственно, следующие:Соответственно, отношения преобразования между 4 различными последовательностями кодовых слов и каждой поднесущей опорных сигналов заключаются в следующем:последовательность W1′ кодовых слов приспосабливается посредством поднесущей n1 опорных сигналов;последовательность W2′ кодовых слов приспосабливается посредством поднесущей n2 опорных сигналов;последовательность W3′ кодовых слов приспосабливается посредством поднесущей n3 опорных сигналов;последовательность W4′ кодовых слов приспосабливается посредством поднесущей n4 опорных сигналов;последовательность W1′ кодовых слов приспосабливается посредством поднесущей n5 опорных сигналов;последовательность W2′ кодовых слов приспосабливается посредством поднесущей n6 опорных сигналов;и т.д.Определяется то, что 4 различных последовательности W1′, W2′, W3′ и W4′ кодовых слов приспосабливаются посредством каждой поднесущей опорных сигналов по очереди.Через способ, предусмотренный в этом варианте осуществления, векторное переключение выполняется для выбранной ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов, и отношения преобразования между каждой поднесущей опорных сигналов и несколькими различными последовательностями кодовых слов определяются, и, следовательно, каждая поднесущая опорных сигналов использует различную последовательность кодовых слов, так что такая проблема, что выходная мощность символов опорных сигналов является несбалансированной, может эффективно уменьшаться.Вариант 6 осуществленияКак показано на фиг.8, устройство мультиплексирования с кодовым разделением каналов предоставлено в этом варианте осуществления, и устройство включает в себя:модуль 801 получения, выполненный с возможностью выполнять векторное переключение для выбранной ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов;модуль 802 определения, выполненный с возможностью определять отношения преобразования между несколькими различными последовательностями кодовых слов, полученными посредством модуля получения, и каждой поднесущей опорных сигналов; имодуль 803 мультиплексирования, выполненный с возможностью мультиплексировать, на каждой поднесущей опорных сигналов, символы опорных сигналов каждого пространственного уровня согласно последовательности кодовых слов, которая соответствует каждой поднесущей опорных сигналов.Модуль 801 получения, в частности, выполнен с возможностью получать 4 различных последовательности кодовых слов следующим образом: для любой четырехмерной ортогональной матрицы W, допустим, что A=W(:,1), B=W(:,2), C=W(:,3) и D=W(:,4),где W(:,m) представляет вектор-столбец, соответствующий столбцу m ортогональной матрицы W, и m варьируется от 1 до 4, переключение векторов-столбцов для ортогональной матрицы W выполняется для того, чтобы получать 4 различных последовательности кодовых слов, которые, соответственно, следующие:W1=[A, B, C, D];W2=[B, A, D, C];W3=[C, D, A, B] или [C, D, B, A];W4=[D, C, B, A] или [D, C, A, B].Соответственно, модуль 802 определения, в частности, выполнен с возможностью:для поднесущей n1 опорных сигналов приспосабливать последовательность W1 кодовых слов;для поднесущей n2 опорных сигналов приспосабливать последовательность W2 кодовых слов;для поднесущей n3 опорных сигналов приспосабливать последовательность W3 кодовых слов;для поднесущей n4 опорных сигналов приспосабливать последовательность W4 кодовых слов;для поднесущей n5 опорных сигналов приспосабливать последовательность W1 кодовых слов;для поднесущей n6 опорных сигналов приспосабливать последовательность W2 кодовых слов;и т.д.Т.е. модуль 802 определения выполнен с возможностью определять то, что 4 различных последовательности W1, W2, W3 и W4 кодовых слов приспосабливаются посредством каждой поднесущей опорных сигналов по очереди.Необязательно, модуль 801 получения, в частности, выполнен с возможностью получать 4 различных последовательности кодовых слов следующим образом: для любой четырехмерной ортогональной матрицы W, допустим, что A’=W'(1,:), B’=W'(2,:), C’=W'(3,:) и D’=W'(4,:),где W'(m:) (m=1…4) представляет вектор-строку, соответствующий строке m ортогональной матрицы W, и m варьируется от 1 до 4, переключение векторов-строк для ортогональной матрицы W выполняется для того, чтобы получать 4 различных последовательности кодовых слов, которые, в частности, следующие:Соответственно, модуль 802 определения, в частности, выполнен с возможностью:для поднесущей n1 опорных сигналов приспосабливать последовательность W1′ кодовых слов;для поднесущей n2 опорных сигналов приспосабливать последовательность W2′ кодовых слов;для поднесущей n3 опорных сигналов приспосабливать последовательность W3′ кодовых слов;для поднесущей n4 опорных сигналов приспосабливать последовательность W4′ кодовых слов;для поднесущей n5 опорных сигналов приспосабливать последовательность W1′ кодовых слов;для поднесущей n6 опорных сигналов приспосабливать последовательность W2′ кодовых слов;и т.д.Т.е. модуль определения определяет то, что 4 различных последовательности W1′, W2′, W3′ и W4′ кодовых слов приспосабливаются посредством каждой поднесущей опорных сигналов по очереди.В общем, через устройство, предусмотренное в этом варианте осуществления, векторное переключение выполняется для выбранной ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов, и отношения преобразования между каждой поднесущей опорных сигналов и несколькими различными последовательностями кодовых слов определяются, и, следовательно, каждая поднесущая опорных сигналов использует различную последовательность кодовых слов, так что проблема дисбаланса мощности, вызываемого посредством опорных сигналов, может эффективно уменьшаться.Порядковый номер предыдущих вариантов осуществления используется только для описания и не представляет порядок предпочтений вариантов осуществления.Все или часть этапов, указываемых в любом варианте осуществления настоящего изобретения, могут быть реализованы посредством использования программного обеспечения. Соответствующие программы могут быть сохранены на читаемых носителях хранения данных, таких как CD-ROM или жесткий диск.Предыдущие описания являются просто примерными вариантами осуществления настоящего изобретения и не имеют намерение ограничивать настоящее изобретение.